

# Project Blue Worcester for the Tatnuck Brook, Mill Brook, and Lake Quinsigamond Watersheds

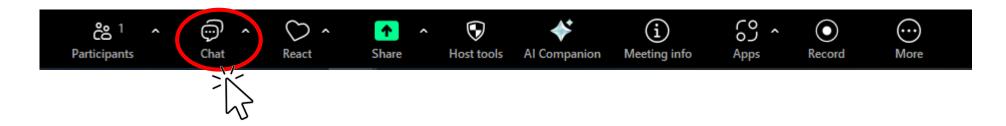


Summary of all
watersheds
April 2, 15, and 24,
2025

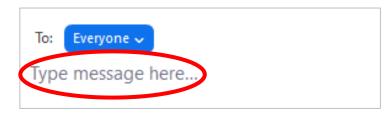







- 1. Introductions / Project Roles
- 2. What is a Watershed Plan?
- 3. Project Steps and Schedule
- 3. How You Can Help!
- 4. Discussion / Q&A



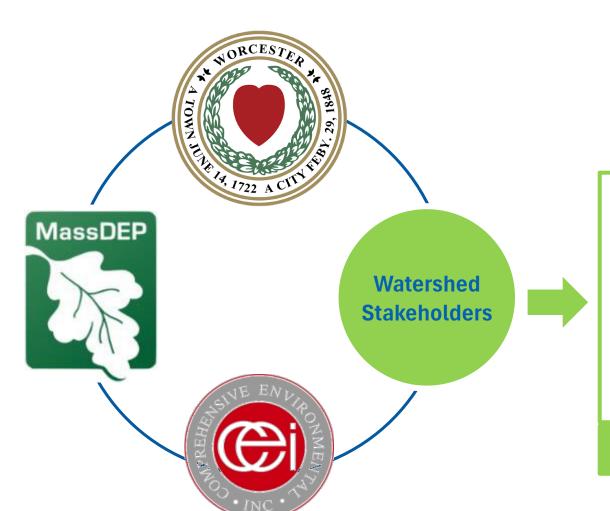



### For Zoom audience:

1. To comment or ask a question, click "Chat" on banner at bottom of screen



2. Type comment/question in chat box at lower right corner of screen)




3. Questions/comments will be read / discussed in Q&A after presentation



- Identify volume and suspected sources of key pollutants
- Set goals for restoration and protection of recreational and ecosystem resources
- Develop a **strategy for reducing pollutants** over the next 10 years under the U.S. EPA's planning framework
- Increase public awareness and build support for blue spaces

# **Project Roles**



#### We need your help to identify:

- Areas for stormwater mgt. improvements
- Known problem areas, such as:
  - > Erosion
  - > Flooding
  - ➤ High pollutant loads



More on this later...

## The 9 Required Elements of a Watershed Plan (US EPA)

**A:** Identify *causes and sources* of pollution requiring control.



**B:** Determine *pollutant load reductions* needed to meet water quality goals.



C: Develop management measures to achieve water quality goals.







**D:** Estimate *technical and financial assistance* needed.



E: Public Information and Education



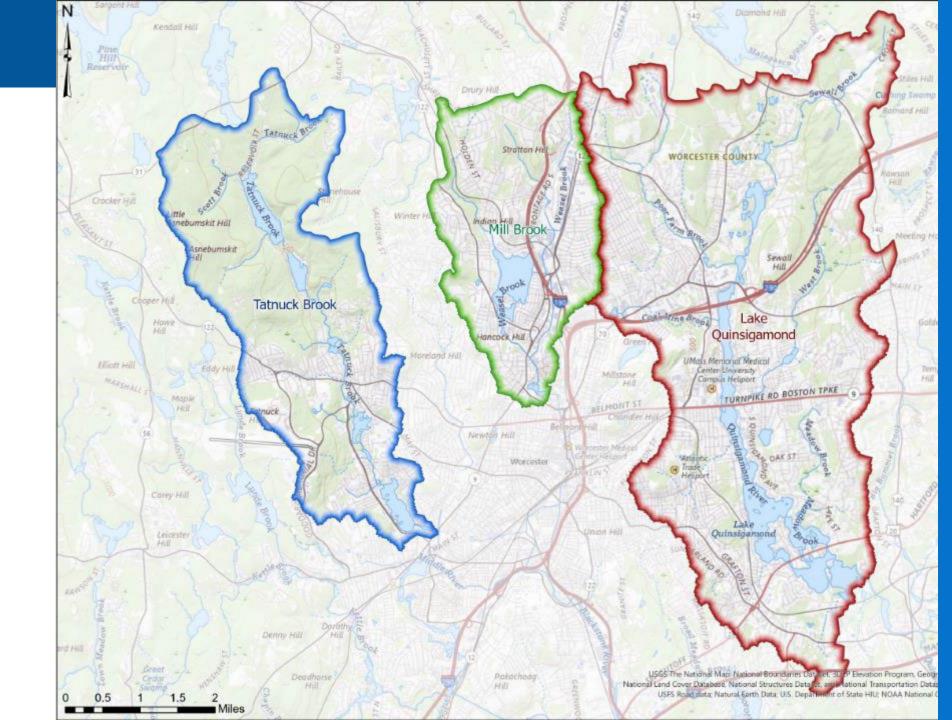
**F:** Implementation Schedule

**G:** Interim Measurable Milestones



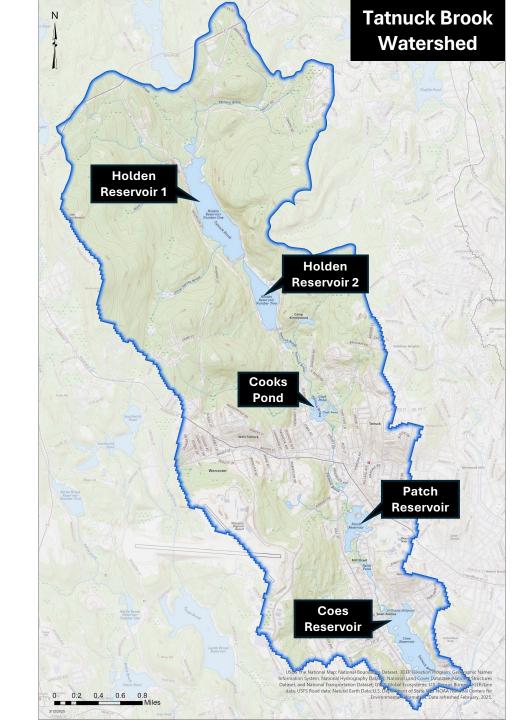
**H:** Criteria to measure progress

**I:** Monitoring



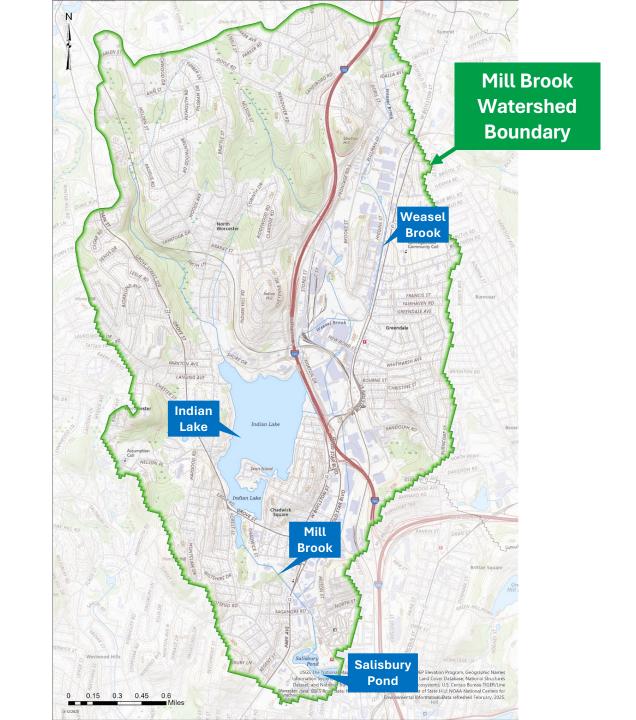

# Watershed Study Areas





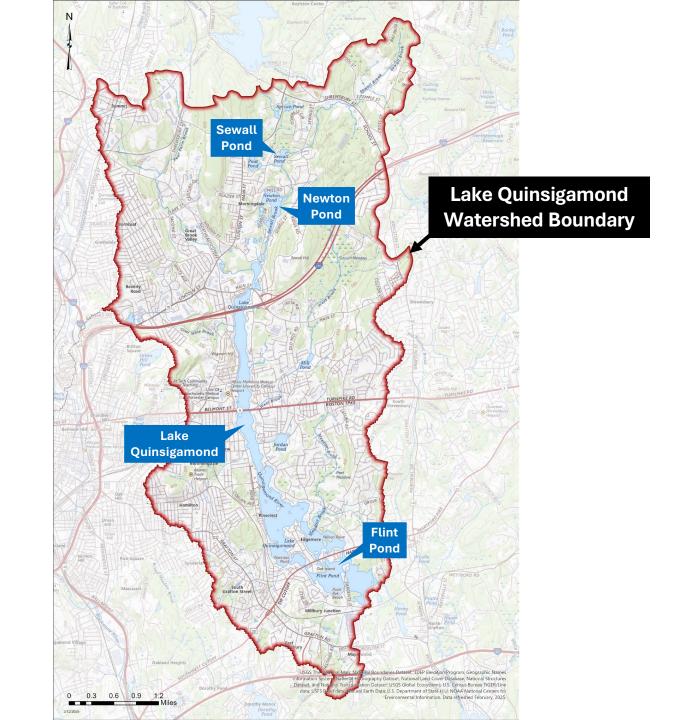

Lake Quinsigamond




# Project Steps and Components






# **Project Steps and Components**





# Project Steps and Components





#### Step 1: Compile Data / Data Management Plan

- Lots of data to wrangle!
  - Volunteer monitoring data
  - Watershed organizations
  - State/Federal agencies



- Quality Assurance Project Plan (QAPP)
  - Guides how (and which) data will be used



#### Step 2: Talk to You!



Conduct **public workshops** to provide project overview and solicit input on the WBP development.

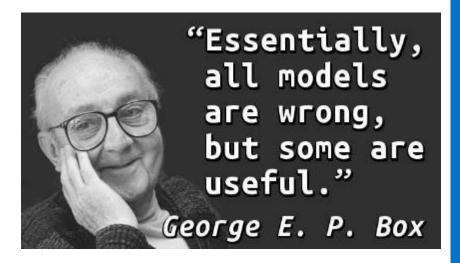
- One public workshop for each watershed
- Solicit early input to shape the plan's development (more on this later!)



#### **Step 3: Modeling and Analysis**

#### **Lake Loading Response Model (LLRM)**

Build Existing
Conditions Model


- Calculate pollutant loading
- Calculate WQ

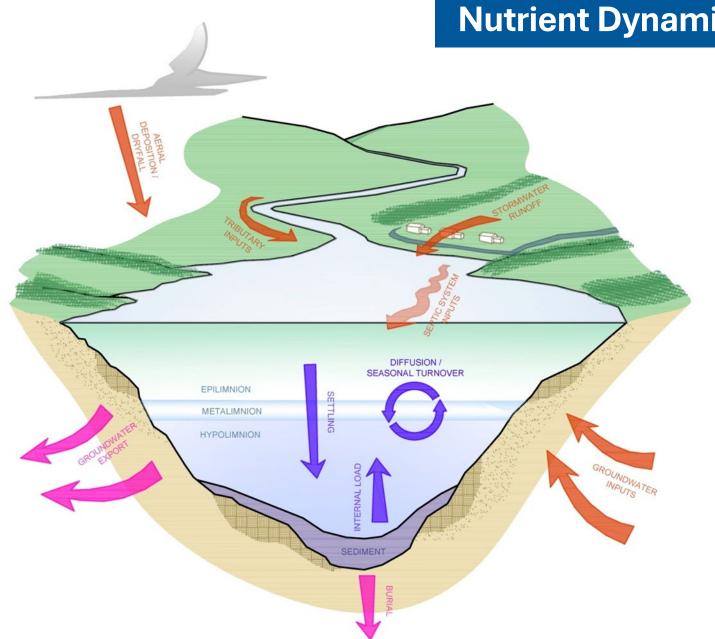
Calibrate

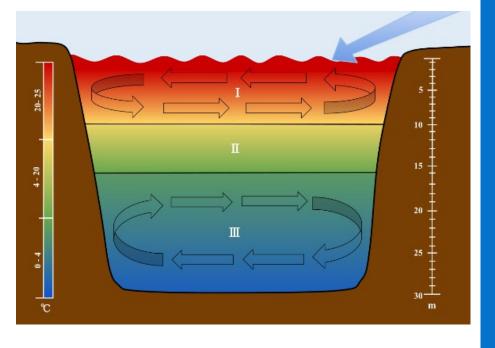
Based on available data

Load Reduction
Analysis

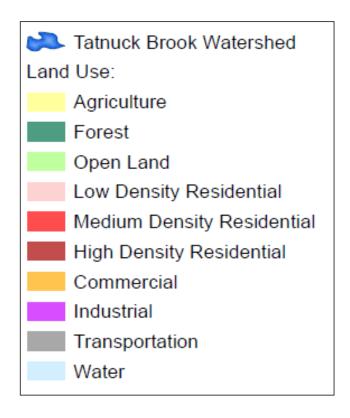
 Determine reductions needed to meet WQ Targets!

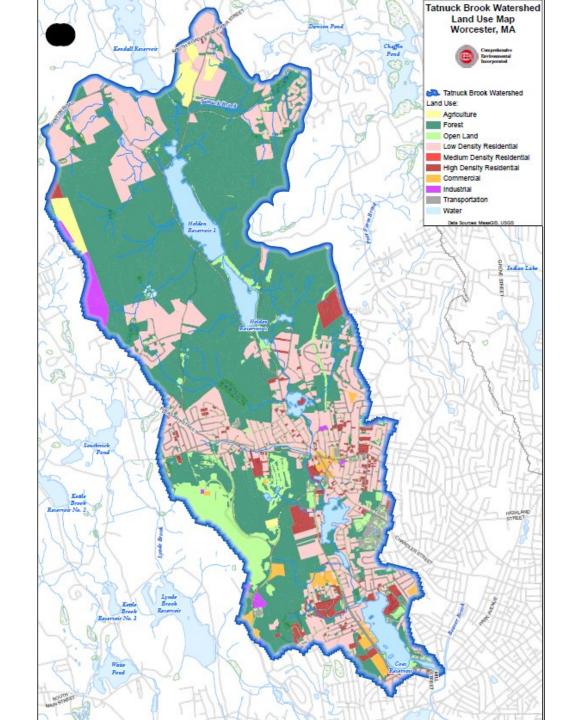



# What is Water Quality Modeling?


- Water quality models uses available information to explain and predict how a lake or river behaves in response to pollutant loads.
- Models can inform watershed management decisions and help answer questions, such as:



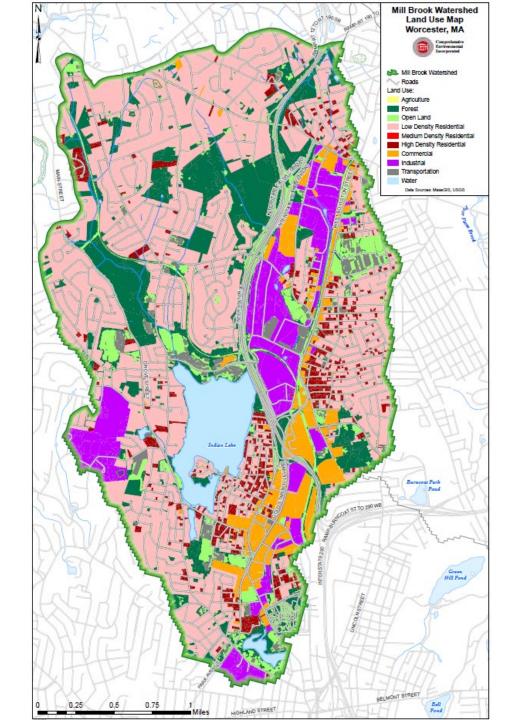

- > How much **pollutant load reduction** is needed to meet water quality goals?
- > Where should watershed management funds be spent to prevent algae blooms?
- What will lake/river water quality be like in 25 years?
- How will a lake/river respond to climate change?


# Lake/Watershed Nutrient Dynamics



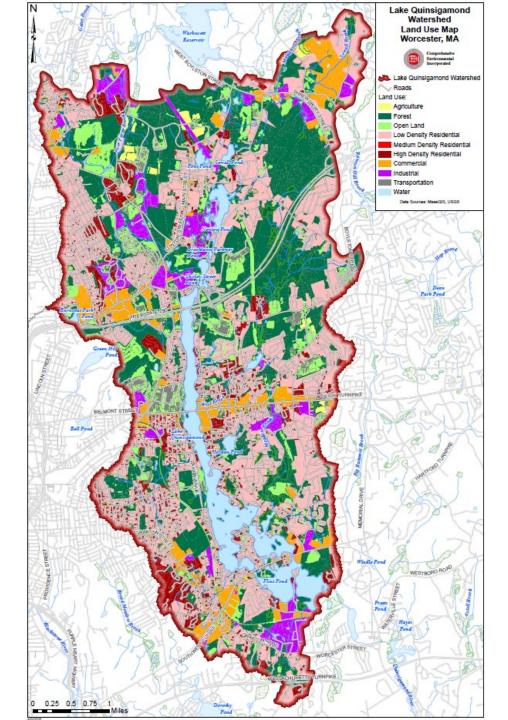


# Land Uses in the Tatnuck Brook Watershed

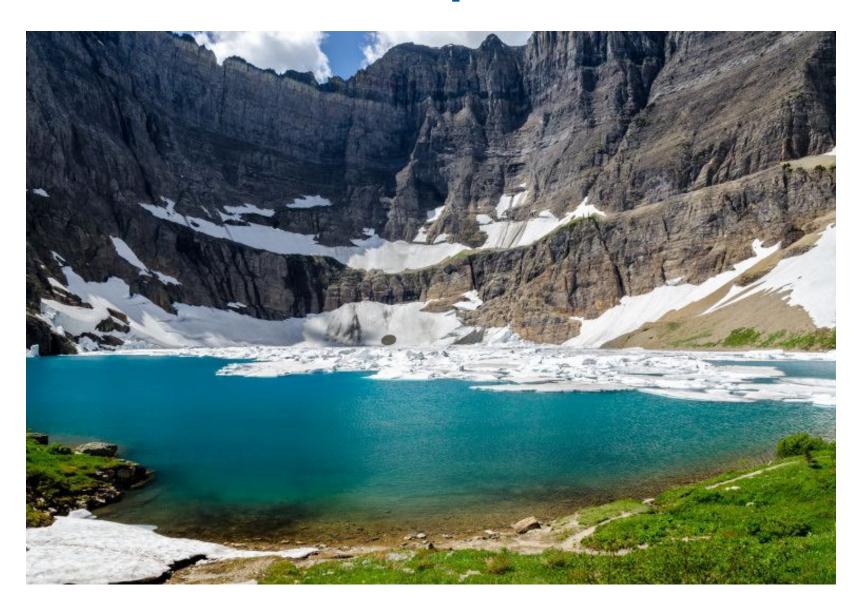





# Land Uses in the Mill Brook Watershed


#### Land Use:

- Agriculture
- Forest
- Open Land
- Low Density Residential
- Medium Density Residential
- High Density Residential
- Commercial
- Industrial
- Transportation
- Water




# Land Uses in the Lake Quinsigamond Watershed

### Land Use: Agriculture Forest Open Land Low Density Residential Medium Density Residential High Density Residential Commercial Industrial Transportation Water

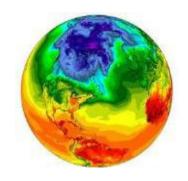


# **Lake/Pond Trophic Classes**



### EUTROPHICATION: The natural process by which nutrients, organic matter and sediments

gradually accumulate within a water body, resulting in decreased depth and increased biological productivity.




**TIME** 

# **Three Primary Factors Regulating Trophic State**



1. Rate of Nutrient Supply



2. Climate



- 3. Shape of Lake Basin
  - Depth
  - Volume / Surface Area
  - Watershed to Lake Area Ratio

# How Eutrophication is Measured




#### **Total Phosphorus (TP): causal variable**

typically the "limiting nutrient" for plant/algae growth in freshwater



#### Chl-a: response variable

photosynthetic pigment in plants, algae, cyanobacteria



#### Secchi disk: response variable

measures water clarity in response to algae, sediment, water color, etc.

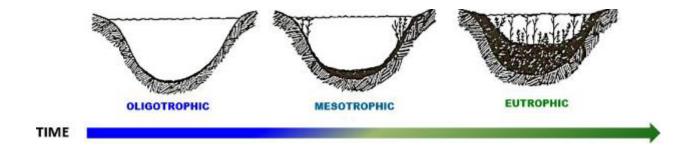
| Carlson Trophic Status Index (TSI) |           |                         |                        |
|------------------------------------|-----------|-------------------------|------------------------|
| Trophic<br>Class                   | TP (μg/L) | Chl- <i>a</i><br>(µg/L) | Secchi<br>Depth<br>(m) |
| Oligotrophic                       | < 12      | < 2.6                   | > 4                    |
|                                    |           |                         |                        |

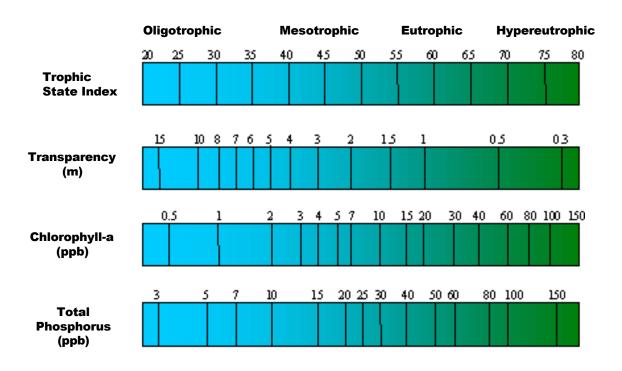
12 - 24

≤ 24

2.6 - 7.3

≤ 7.3


2 - 4


< 2

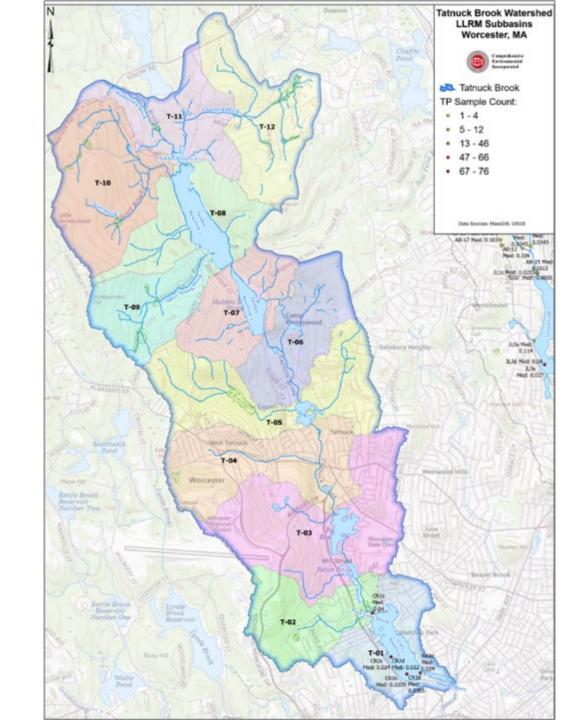
Mesotrophic

**Eutrophic** 

# How Eutrophication is Measured



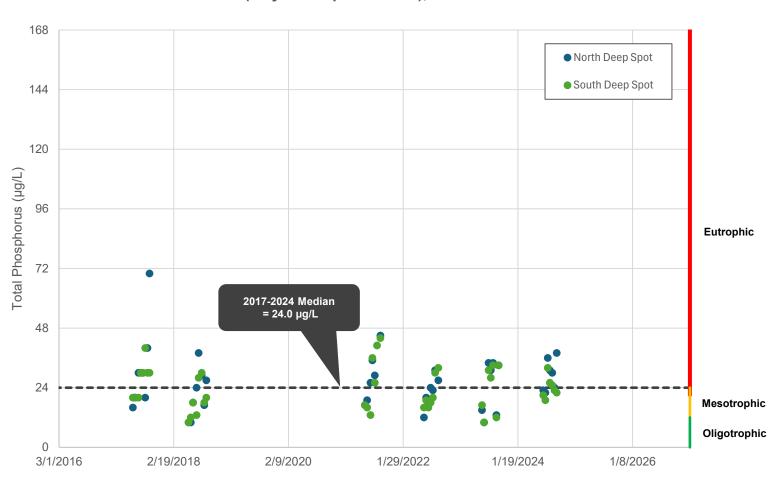


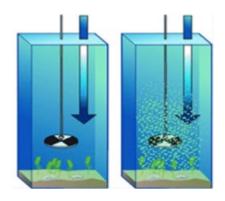

Carlson Trophic Status Index (TSI)

Each 10 point TSI increase = doubling of phosphorus, 2.8 fold increase in algal biomass

# Measuring **Eutrophication**

# Water Quality in Tatnuck Brook

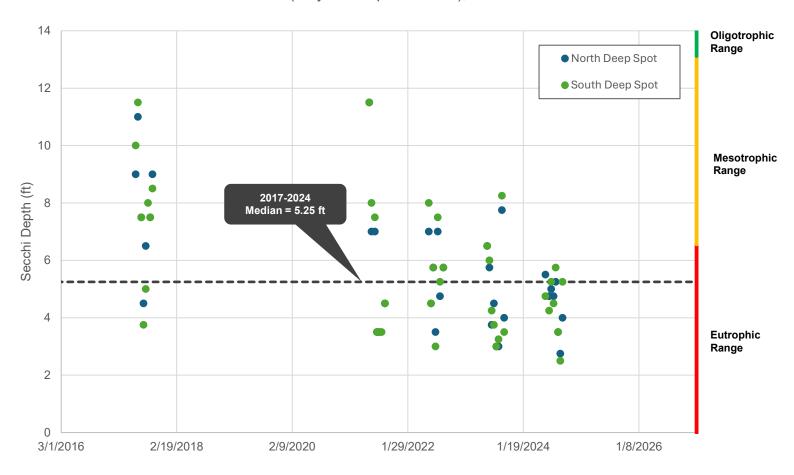

- Coes Reservoir examples
- Additional data graphs for Coes,
   Patch Reservoir, and Cooks Pond (at end if time allows)






#### **Coes Reservoir**

Deep Spot (Surface Water) Total Phosphorus (μg/L) Summer Data (May 21- September 21), 2017-2024






### **Secchi Disk Water Clarity**

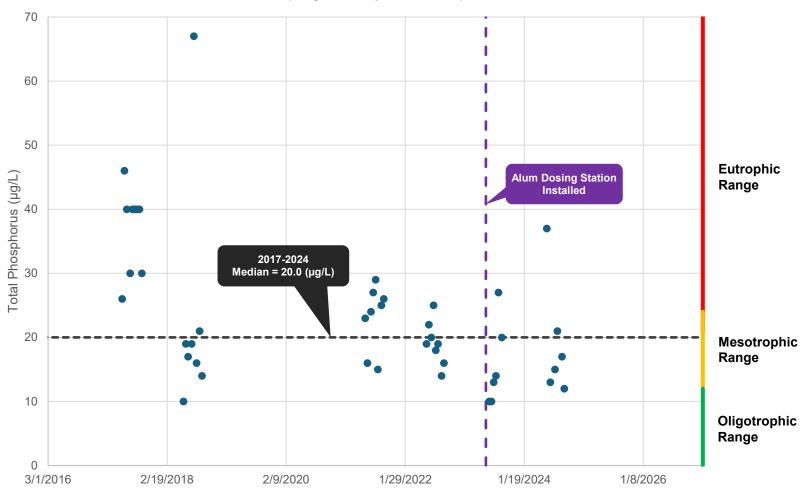
#### **Coes Reservoir**

Deep Spot Secchi Disk Water Clarity (ft)
Summer Data (May 21- September 21), 2017-2024



Measuring
Eutrophication

Water Quality in
Mill Brook
Watershed


• Indian Lake examples



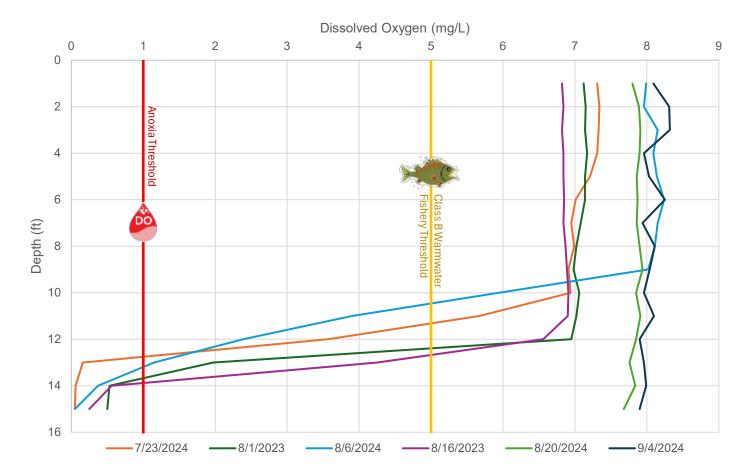


#### **Indian Lake**

Northern Deep Spot (Surface Water) Total Phosphorus (µg/L) Summer Data (May 21- September 21), 2017-2024



#### **Median TP**

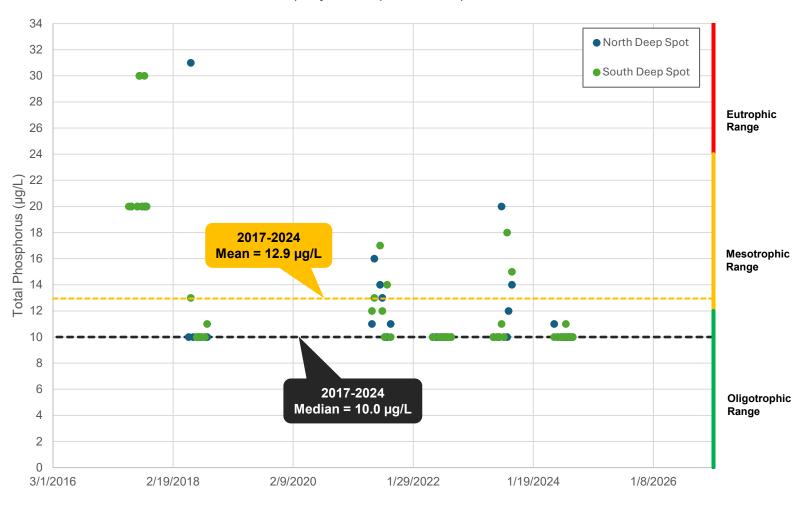

- 2017-2024: 20 ug/L
- Before dosing station: 22 ug/L
- After dosing station: 15 ug/L

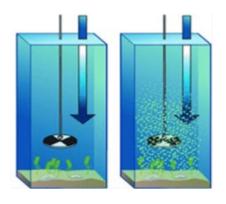


### Dissolved Oxygen (DO)

### **Indian Lake**

Northern Deep Spot Example Late Summer Dissolved Oxygen Profiles (2023-2024)



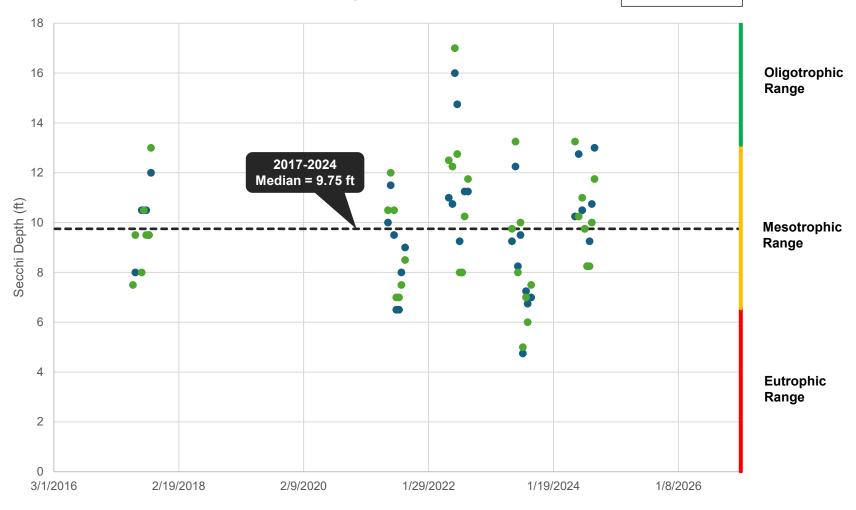






### Lake Quinsigamond

Deep Spot (Surface Water Total Phosphorus (μg/L) Summer Data (May 21- September 21), 2017-2024

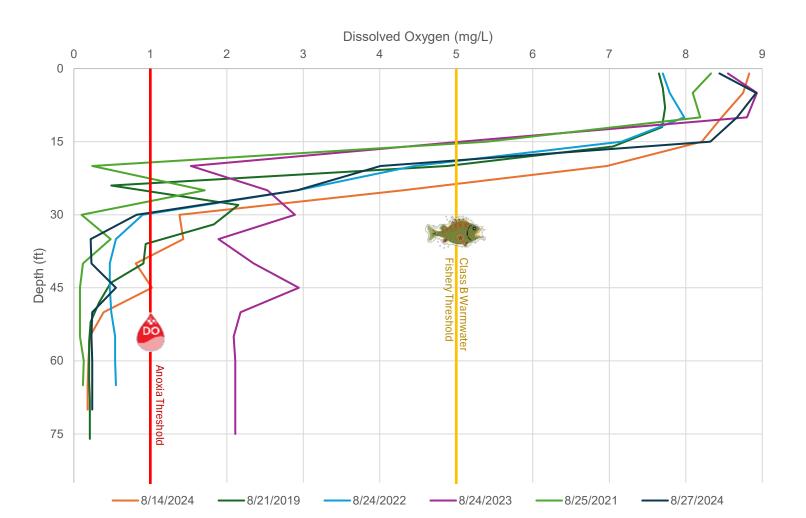





### **Secchi Disk Water Clarity**

### Lake Quinsigamond

Deep Spot Secchi Disk Water Clarity (ft) Summer Data (May 21- September 21), 2017-2024








### Dissolved Oxygen (DO)

Lake Quinsigamond South Deep Spot Example August Dissolved Oxygen Profiles (2019-2024)



### **Step 4: Set Water Quality Goals**



#### **Step 4: Set Water Quality Goals**

# Setting WQ Goals: The Goldilocks Challenge



- 1. Too Extreme: goal not realistically attainable
- 2. Not Protective Enough: goal is achievable but may not prevent WQ impairments
- 3. Just Right: goal is both realistically attainable and will prevent WQ impairments
  - Revise goal as needed based on new data, response to BMPs, etc.

#### **Step 5: Assess Watersheds**

#### Watershed Field Assessment

**Goal:** Identify improvement sites for next phase of project (implementation/construction!); reduce pollutant loads



- Coordinate with watershed residents to identify "hotspots" for engineering assessment
- details on how you can help at end of presentation...





## **Step 6: Develop an Action Strategy**





- Develop strategy for structural and non-structural
   NPS measures to reduce pollutant loading, achieve water quality goals
- Conceptual designs for 10-15 sites in each watershed (structural SCMs)

# **Example Sites**

#### AREA 2: Bow Parks and Recreation Parking Lot

**Location:** Bow Parks and Recreation Building **Subwatershed**: Turee Pond

Owner: Town of Bow Priority: High



Photo 2-4: Proposed BMP configuration for Bow Parks and Recreation Parking Lot

#### **Proposed Improvements:**

- 1. Install **asphalt berm** on south side of parking lot; direct runoff into treebox filters.
- 2. **Re-pave /re-grade parking lot** to eliminate ponding and unwanted flow channels, promoting positive drainage to tree box filters.
- 3. Increase **vegetated buffer** along shoreline areas with a double row of shrub plantings.
- 4. **Stabilize steep slope** with riprap and vegetation
- 5. Install **sediment traps** in existing catch basins.

# **Example Sites**

#### **AREA 3: Turkey River Historic Landing**

**Location:** Grappone Toyota Service Center Subwatershed: Turkey River

Owner: Bow Junction Associates Inc. Priority: High



Photo 3-1: Severe erosion adjacent to water access point.



Photo 3-2: Loose stone and sand on slope.



Photo 3-3: Severe erosion adjacent to water access point.

#### **Proposed Improvements:**

Stabilize eroding bank with native vegetation / bio-stabilization techniques.

Pedestrian access point to remain.

# **Example Sites**

#### **AREA 7: Concord District Court**

**Location:** Grassed Fields North of Court House

Owner: State of New Hampshire

Subwatershed: Bow Brook

**Priority**: High



Photo 7-1: Western portion of Bow Brook.



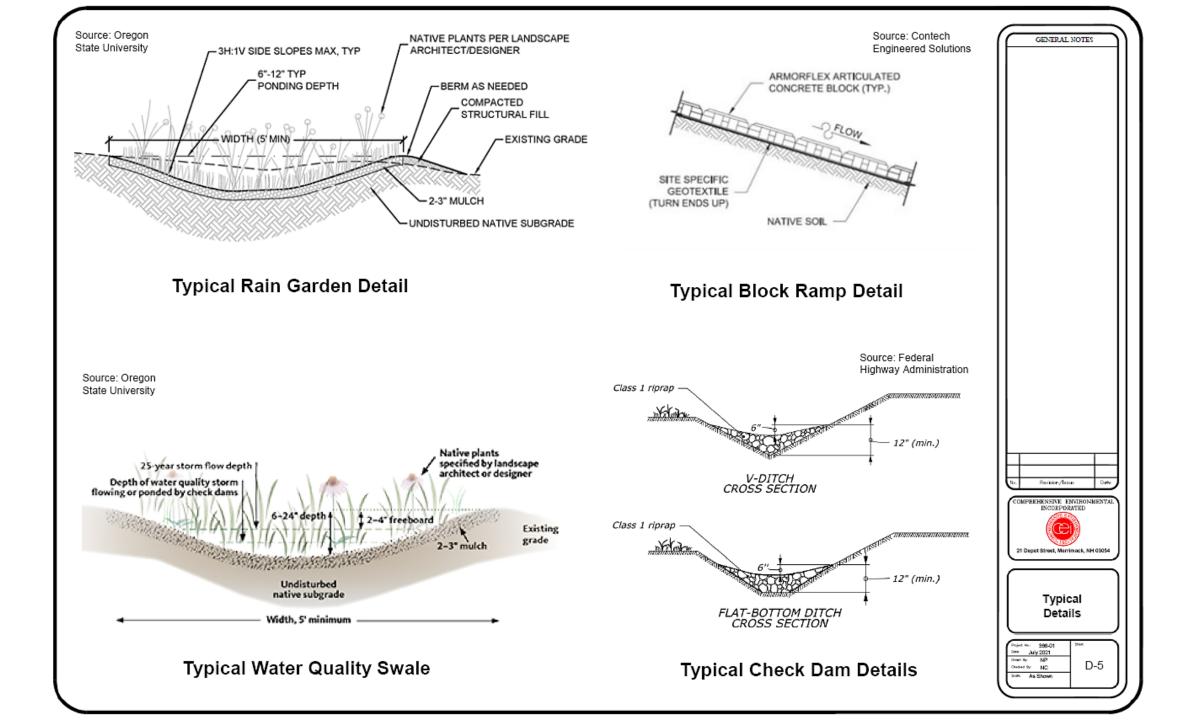

Photo 7-2: Edge of roadway erosion channel.



Photo 7-3: Eastern portion of Bow Brook

#### **Proposed Improvements:**

- 1. Develop **20-ft "no-mow" zone** along 1000 feet of Bow Brook; stabilizing the bank and increasing pollutant uptake
- 2. Stabilize roadway erosion with riprap



**BMP Priority Ranking** 

L = Low M = Medium H = High

\* For cost factors, lower cost = higher priority

|         |                                                 |                                                                                                                |                                                                                                                                                                                             |               | mated Lo      |                 | Construction | Engineering  |           |               |               | Rankii          | ng Factors /           | Scoring            |                      |       | Site     |
|---------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-----------------|--------------|--------------|-----------|---------------|---------------|-----------------|------------------------|--------------------|----------------------|-------|----------|
| Area ID | Location                                        | Existing Issues                                                                                                | Proposed Improvements                                                                                                                                                                       | TP<br>(lb/yr) | TN<br>(lb/yr) | TSS<br>(ton/yr) | Cost<br>(\$) | Cost<br>(\$) | Capital C | ost Range     | TP<br>Removal | Capital<br>Cost | Waterbody<br>Proximity | lmp.<br>Complexity | Public<br>Visibility | Score | Priority |
| 1       | Turee Pond Boat Launch on<br>Falcon Way         | Eroding parking area near boat launch.                                                                         | Pave boat ramp and parking area and install tree box filter.                                                                                                                                | 0.22          | 1.64          | 0.06            | \$65,000     | \$26,000     | \$72,800  | \$109,200     | М             | L               | н                      | М                  | н                    | 65    | Medium   |
| 2       | Bow Parks and Rec Dept.<br>Building Parking Lot | Eroding sandy slope and runoff discharge from parking lot into Bow Town Pond .                                 | Stabilize/armor eroding slope (appx. 2,200 sf), repave parking lot, install series of 3 treebox filters, and improve vegetated buffer.                                                      | 1.50          | 6.50          | 1.18            | \$195,000    | \$78,000     | \$218,400 | \$327,600     | н             | L               | н                      | L                  | н                    | 70    | High     |
| 3       | Grappone Toyota/Service<br>Center               | Gully erosion along bank at access point to<br>Turkey River.                                                   | Stabilize eroding bank (appx. 600 sf) with native vegetation plantings and bio-stabilization techniques.                                                                                    | 1.00          | 2.00          | 1.10            | \$15,000     | \$6,000      | \$16,800  | \$25,200      | н             | М               | н                      | н                  | М                    | 85    | High     |
| 4a      |                                                 | Narrow buffer adjacent to Library Pond.                                                                        | Enhance buffer along the shoreline with double row of shrub plantings (appx. 2,000 sf). Stabilize walking path upgradient of narrow buffer with pea gravel.                                 | -             | -             | -               | \$23,000     | \$9,200      | \$25,760  | \$38,640      | L             | М               | н                      | М                  | М                    | 60    | Medium   |
| 4b      | St. Paul's School                               | Unstabilized bank and narrow buffer adjacent to Library Pond.                                                  | Stabilize appx. 700 sf area using biostabilization techniques.                                                                                                                              | 0.20          | 0.60          | 0.40            | \$7,000      | \$2,800      | \$7,840   | \$11,760      | М             | н               | н                      | н                  | м                    | 85    | High     |
| 4c      |                                                 | Narrow buffer along appx. 100 ft of shoreline receives runoff from paved Rectory Rd.                           | Enhance buffer along the shoreline with double row of shrub plantings (appx . 2,100 sf)                                                                                                     | 0.70          | 1.30          | 0.80            | \$12,000     | \$4,800      | \$13,440  | \$20,160      | М             | н               | н                      | М                  | М                    | 75    | High     |
| 4d      |                                                 | An unpaved footpath discharges directly into southern side of Library Pond.                                    | Install waterbars to redirect runoff away from Pond and reduce erosion. Enhance appx. 375 sf buffer area with woody plantings.                                                              | 1.55          | 4.10          | 1.73            | \$16,000     | \$6,400      | \$17,920  | \$26,880      | н             | М               | М                      | н                  | М                    | 75    | High     |
| 5       | Crumpacker Boathouse                            | Eroding dirt road and minimal buffer adjacent to Little Turkey Pond.                                           | Install waterbars to direct runoff away from Pond and reduce erosion.<br>Enhance 2,100 sf buffer with double row of shrubs/trees.                                                           | 0.12          | 0.90          | 0.0             | \$21,000     | \$8,400      | \$23,520  | \$35,280      | L             | М               | М                      | М                  | М                    | 50    | Low      |
| 6       | Hampton Inn Rear Parking Lot                    | N/A - opportunistic implementation area.                                                                       | Install appx. 1,000 sf infiltration basin or rain garden in center of the parking lot.                                                                                                      | 0.31          | 2.60          | 0.04            | \$27,000     | \$10,800     | \$30,240  | \$45,360      | М             | М               | L                      | L                  | L                    | 40    | Low      |
| 7       | Concord District Court                          | Minimal buffer along Bow Brook. Areas of erosion observed at culvert.                                          | Develop a 20-ft "no-mow" zone along appx. 1,000 ft of Bow Brook.<br>Stabilize eroding area near culvert with riprap (appx. 500 sf)                                                          | -             | -             | -               | \$6,000      | \$2,400      | \$6,720   | \$10,080      | L             | н               | н                      | н                  | М                    | 80    | High     |
| 8       | Concord High School Parking<br>Lot              | N/A - opportunistic implementation area.                                                                       | Install infiltration trench (appx. 80 ft long) along western edge of parking lot.                                                                                                           | 0.96          | 8.70          | 0.11            | \$28,000     | \$11,200     | \$31,360  | \$47,040      | н             | М               | М                      | L                  | М                    | 60    | Medium   |
| 9       | Footpath Along Interstate-89                    | Runoff from concrete foot bridge enters Little Turkey Pond.                                                    | Install infiltration steps to slow runoff velocity and promote infiltration.<br>Armor downgradient shoreline to prevent erosion.                                                            | 0.056         | 0.44          | 0.01            | \$13,000     | \$5,200      | \$14,560  | \$21,840      | L             | н               | М                      | L                  | L                    | 50    | Low      |
| 10      | Currier Road Culvert near<br>Whittier Pond      | Areas of erosion adjacent to culvert headwall<br>and road shoulder. Sediment buildup<br>downstream of culvert. | Armor headwall slopes to limit erosion. Install depressed riprap<br>forebay and lined riprap channel downstream of culvert to prevent<br>further erosion.                                   | -             | -             | -               | \$13,000     | \$5,200      | \$14,560  | \$21,840      | L             | н               | М                      | L                  | L                    | 50    | Low      |
| 11      | Boutwell Mill Brook                             | Runoff from the roadway and parking area enter Boutwell Mill Brook.                                            | Stabilize side of Farrington Comer Road with riprap. Install treebox filter to collect runoff from unpaved parking area.                                                                    | 0.16          | 1.47          | 0.03            | \$27,000     | \$10,800     | \$30,240  | \$45,360      | L             | М               | н                      | L                  | L                    | 50    | Low      |
| 12      | Jewett Road Culvert Over One<br>Stack Brook     | Erosion of headwall embankment caused by runoff from road.                                                     | Install riprap along headwall and wingwall embankment areas to limit erosion caused by surface runoff.                                                                                      | -             | -             | -               | \$5,000      | \$2,000      | \$5,600   | \$8,400       | L             | н               | н                      | М                  | L                    | 65    | Medium   |
| 13      | Grapevine Road Culvert Over<br>Bela Brook       | Unstabilized area and erosion directly adjacent to Bela Brook from Grapevine Rd.                               | Stabilize existing area with riprap. Create small riprap lined energy dissipation area (110 sf) around existing catch basin.                                                                | 0.06          | 0.11          | 0.07            | \$9,000      | \$3,600      | \$10,080  | \$15,120      | L             | н               | М                      | н                  | L                    | 65    | Medium   |
| 14      | Page Road Culvert Over White<br>Brook           | Roadside erosion of sandy soils on the southern side of Page Road.                                             | Armor area surrounding culvert inlet and outlet, including embankment, to prevent erosion. Establish vegetated buffer along roadway (appx. 150 ft) consisting of shrubs and hearty grasses. | 0.34          | 0.68          | 0.40            | \$18,000     | \$7,200      | \$20,160  | \$30,240      | М             | М               | н                      | М                  | L                    | 60    | Medium   |
| 15      | Turkey River Near Chen Yang<br>Li Restaurant    | Embankment adjacent to Turkey River is getting undercut from parking lot runoff.                               | Stabilize embankment with gabion wall (appx. 10 ft tall by 100 ft long). Enhance stream buffer with native woody plantings (appx. 2,800 sf).                                                | -             | -             | -               | \$86,000     | \$34,400     | \$96,320  | \$144,480     | ٦             | L               | М                      | L                  | L                    | 35    | Low      |
| 16      | Abbot-Downing School                            | N/A - opportunistic implementation area.                                                                       | Armor unpaved footpath with gravel to limit erosion. Direct runoff from upgradient parking area to approx. 300 sf raingarden.                                                               | 0.20          | 1.68          | 0.03            | \$22,000     | \$8,800      | \$24,640  | \$36,960      | М             | М               | М                      | L                  | н                    | 55    | Low      |
|         |                                                 |                                                                                                                | TOTALS                                                                                                                                                                                      | 7.4           | 32.7          | 6.0             | \$608,000    | \$243,200    | \$680,960 | - \$1,021,440 |               |                 |                        |                    |                      |       |          |

## **Step 7: Develop Final Plan**

- Draft watershed plans for each watershed
- Three public hybrid meetings (one per watershed) to present the draft plans
  - Compile public feedback/comments
  - Prepare responses to comments
- Final Watershed Plans (estimated by spring 2026)





The next phase of the project will be to **build and implement** the recommendations of the watershed plans!

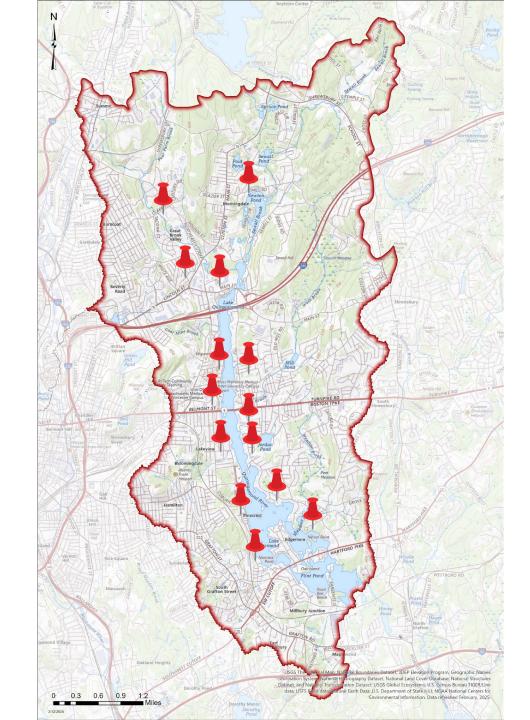


#### Worcester Watershed-Based Management Plans



Description of the




455 Main Street Room 201 Worcester, MA 01608

Comprehensive Environmental Inc. • 41 Main Street, Bolton, MA 01740 • www.celengineers.com

# **Project Task:**

Lake Quinsigamond
Watershed Assessment

- Guided by public input and desktop analysis
- Field assessment of watershed, pollution sources

























**Public Education** 













| Problem Type                                                                                                                                                                         | Description                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| <ul> <li>EROSION</li> <li>Surface Erosion</li> <li>Road Shoulder Erosion</li> <li>Ditch</li> <li>Shoreline / Stream Bank</li> <li>Bare/uncovered soil/sand/salt stockpile</li> </ul> | Severity: Slight, Moderate, Severe Size: Length/Width, Area |











| Problem Type            | Description                             |                              |
|-------------------------|-----------------------------------------|------------------------------|
| Culverts/Infrastructure | Unstable Inlet/Outlet<br>Clogged/Buried | Crushed/Broken<br>Undersized |

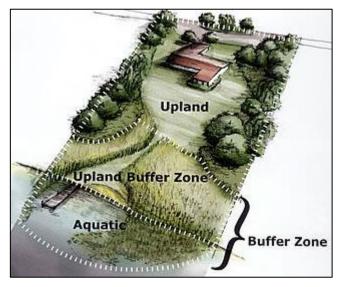






| Problem Type | Description                                                |  |  |  |  |
|--------------|------------------------------------------------------------|--|--|--|--|
| Parking Lots | Drains Directly to Waterbody Evidence of Concentrated Flow |  |  |  |  |










| Problem Type | Description                              |                            |  |  |  |  |
|--------------|------------------------------------------|----------------------------|--|--|--|--|
| Shoreline    | Undercut<br>Lack of Shoreline Vegetation | Erosion<br>Unstable Access |  |  |  |  |











| Problem Type                                       | Description                                                                              |
|----------------------------------------------------|------------------------------------------------------------------------------------------|
| Waterfowl droppings; Pet waste                     | Areas where flocks of geese/ducks congregate; Public areas with ongoing pet waste issues |
| Other (e.g., area to improve stormwater treatment) | Improve treatment; reduce flooding; increase infiltration; re-vegetate                   |








# VOLUNTEERS We need your help!

### Help identify "hotspots" for CEI's engineering assessment

- Survey 123 field assessment form
- Complete on a **mobile device** or **paper form** your choice





**Survey 123:** For mobile devices


Web link: <a href="https://tinyurl.com/TatnuckSurvey">https://tinyurl.com/TatnuckSurvey</a>

QR code:



**Instantly uploads** your observations and photos!





**Survey 123:** For mobile devices

Web link: <a href="https://tinyurl.com/MillWatershedSurvey">https://tinyurl.com/MillWatershedSurvey</a>

QR code:



**Instantly uploads** your observations and photos!





**Survey 123:** For mobile devices

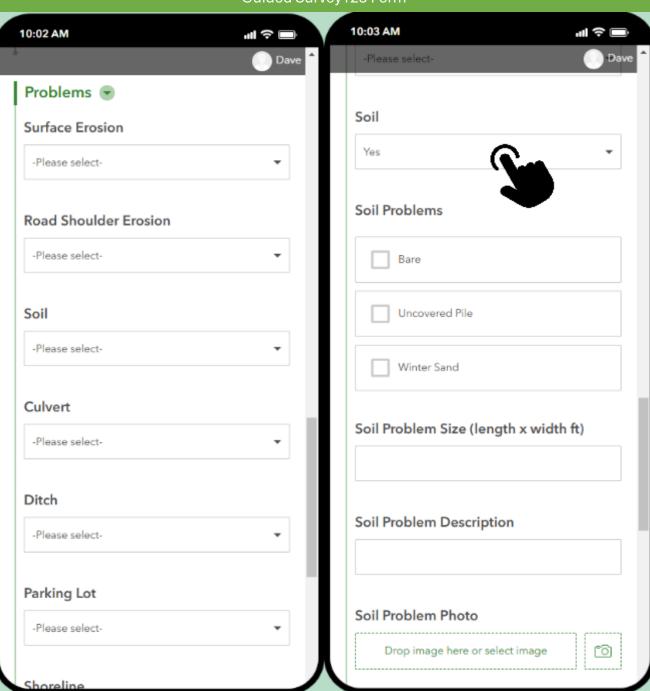
Web link: <a href="https://tinyurl.com/QuinsigSurvey">https://tinyurl.com/QuinsigSurvey</a>

QR code:



**Instantly uploads** your observations and photos!




#### Hardcopy Data Form

#### Lake Quinsigamond Watershed Assessment Field Survey Form

| Site # Date:                  | Surveyor:           |                   |
|-------------------------------|---------------------|-------------------|
| Weather Conditions:           | Rain in last 48 hou | urs?              |
| Location (house #, road nam   | e, intersection)    |                   |
| GPS Coordinates:              |                     | Photos Taken?     |
| Land Use/Activity: circle one |                     |                   |
| State Road                    | Residential         | Trail/Path        |
| Municipal Road                | Commercial          | Agriculture       |
| Private Road                  | Municipal/Public    | Construction Site |
| Driveway                      | Boat Access         | Other:            |
|                               |                     |                   |

| Problem Type             | Description (circle)                                                                                   | Notes/Description of Problem | Approximate Size<br>(length x width) |
|--------------------------|--------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------|
| Surface<br>Erosion       | Slight<br>Moderate<br>Severe                                                                           |                              |                                      |
| Road Shoulder<br>Erosion | Slight<br>Moderate<br>Severe                                                                           |                              |                                      |
| Soil                     | Bare<br>Uncovered Pile<br>Winter Sand                                                                  |                              |                                      |
| Culvert                  | Unstable Inlet/Outlet<br>Clogged<br>Crushed/Broken<br>Undersized                                       |                              |                                      |
| Ditch                    | Slight Erosion<br>Moderate Erosion<br>Severe Erosion<br>Bank Failure<br>Undersized                     |                              |                                      |
| Parking Lot              | Drains Directly to Waterbody<br>Evidence of Concentrated Flow                                          |                              |                                      |
| Shoreline                | Undercut Lack of Shoreline Vegetation Erosion Unstable Access                                          |                              |                                      |
| Agriculture              | Livestock Access to Waterbody<br>Tilled Eroding Fields<br>Manure Washing Off-Site<br>Inadequate Buffer |                              |                                      |
| Other                    |                                                                                                        |                              |                                      |

#### Guided Survey123 Form



Markups on a map



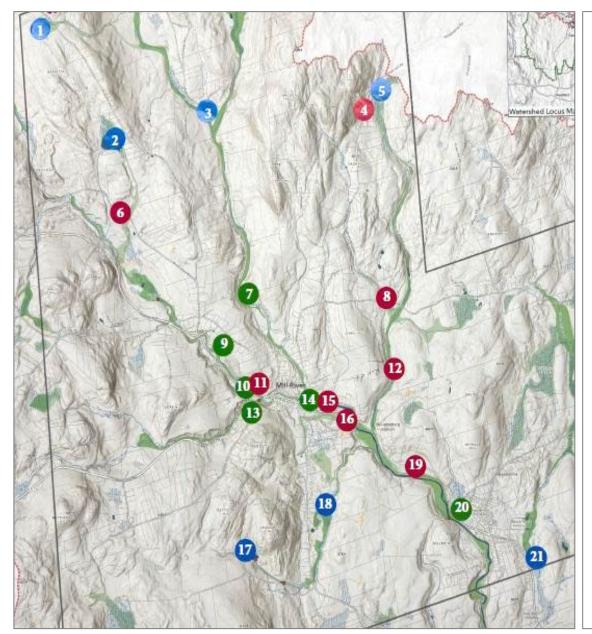
# Email / Bullet List

Hi Bob,

Areas of known or suspected hotspots within the Hood Pond Watershed would include the following:

Goose/waterfowl grazing: These two parcels surround Hood Pond and can have large populations or grazing geese. Last year had 2 nesting families. Numbers fluctuate year to year.

- · Hood Park, 4 Rollins St (Map/Lot 29152)
- Waterview Estates, 71 North High St (Map/Lot 31023)


Suspected high pollutant load areas: Mostly commercial, and no known stormwater treatment structures.

- Crystal Ave and Manchester Road (ka Route 28): This is the main commercial and industrial areas. Stormwater control are installed as properties are redeveloped. Some areas to
  focus on are highlighted below:
- · Hood Commons (stores, shopping plaza, banks) surrounded by Crystal Ave, Tsienneto, Pinkerton St, and Peabody Rd:
  - 55 Crystal Ave (36017), 57 Crytal Ave (36017-001), 61 Crystal Ave (36018), 42 Pinkerton St (36018-001),
- Tinkham Ave (Commercial/Industrial): No known stormwater treatment structures, stormdrain system on this street partially sunsets a perennial stream which daylights at the end of the street.
- · "A" and "B" Street (Industrial/Commercial)- off of Manchester Road.

#### Suspected residential sources:

- Rainbow Lake (south side of lake) This area is an area of older homes, many of which may have been seasonal and are now year-round, all on septic systems. Shallow bedrock and high water table.
- Areas of large multi-unit apartments or condos
  - Linlew Drive
  - · Hoodkroft Manor, Sunview Condos, Fieldstone Terrace (Condos between Tsienneto and Pinkerton St)
  - Laraway Court -off Franklin St Ext (35005-) and Franklin Place Condos 107 Franklin St Ext (35006-)

*Map / Notes* 



| • | FLOODING                     |
|---|------------------------------|
| • | BEAVER ACTIVITY              |
| • | EROSION and/or SEDIMENTATION |

| Dot #                                 | Notes – street name(s); structures (bridge, culvert, etc.); additional comments   |  |  |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
| 1                                     | Beaver Dam, Briar Hill Rd by Goshen town line                                     |  |  |  |  |
| 2                                     | Beaver Dam behind 47 Briar Hill                                                   |  |  |  |  |
| 3                                     | Beaver Dam on Ashfield Rd by the Dam Trail and Judd Lane                          |  |  |  |  |
| 4                                     | Culvert crossing Nash Hill Rd at Henhawk Trail                                    |  |  |  |  |
| 5                                     | Beaver Dam Nash Hill Rd at Whately town line                                      |  |  |  |  |
| 6                                     | Erosion/sediment Old Goshen Rd at culvert by #66                                  |  |  |  |  |
| 7                                     | Erosion Ashfield Rd past #26- guardrail dangling                                  |  |  |  |  |
| 8                                     | Dam failing Depot Rd @ Adams Rd                                                   |  |  |  |  |
| 9                                     | Erosion of riverbanks Goshen Rd by #39, 36, 30, 12                                |  |  |  |  |
| 10                                    | Repaired (rip rap) Mill River bank along Rt 9; above Chesterfield Rd intersection |  |  |  |  |
| 11                                    | Run off by #4 & #6 Goshen Rd                                                      |  |  |  |  |
| 12                                    | Run off Depot Rd by new culvert; from new development off Hillenbrand Rd.         |  |  |  |  |
| 13                                    | Meekins Brook river trail erosion                                                 |  |  |  |  |
| 14                                    | Riverbank erosion East Main St across from #2                                     |  |  |  |  |
| 15                                    | River over banks Main St by #13,15,17,21,23                                       |  |  |  |  |
| 16                                    | River over banks River Rd                                                         |  |  |  |  |
| 17                                    | Unquomonk Dams-2                                                                  |  |  |  |  |
| 18                                    | Beavers at water treatment facility                                               |  |  |  |  |
| 19                                    | Flooding behind Family Vets 99 Main St                                            |  |  |  |  |
| 20                                    | Bridges- South Main St and Bridge St, Also bank erosion at Valley View Farm       |  |  |  |  |
| 21                                    | Flooding Beaver Brook Golf Course 183 Main St                                     |  |  |  |  |
| Additional Thoughts - Unmanned issues |                                                                                   |  |  |  |  |

#### Additional Thoughts - Unmapped issues

- A water main on <u>East Main St</u> crosses the river at the small dam. It was protected by a concrete
  cap that has since been damaged and washed away by flooding. The main is now exposed,
  leading to potential freezing in the winter and damage from debris.
- The dam <u>behind the Brassworks</u> building is in poor shape as well, losing blocks frequently during flooding events.
- Severe erosion and slope failure from 40 Goshen Rd (behind Mama T's Self storage) to 14 Goshen Rd (behind Williamsburg Animal Clinic).
- O'Brien's Auto Works (23 Main Street) plows their parking area snow into the Mill River.
- In general all Route 9 drainage in both Downtowns are connected to the Mill River and there's
  quite a bit of debris, sediment, trash, and salt that washes in. The roads only get swept once a
  year in the spring.

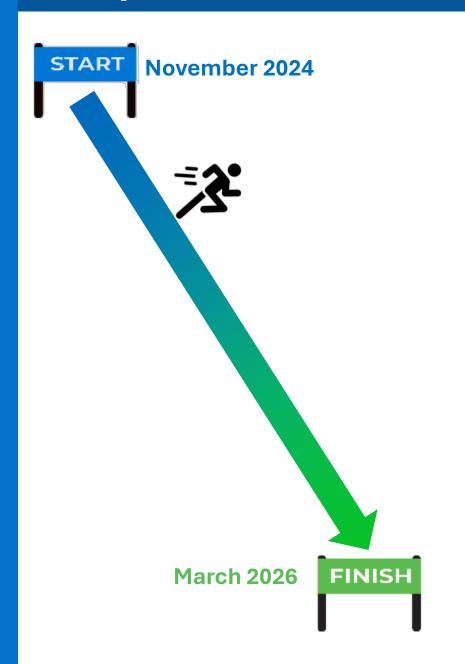


Any format that is easiest for you!

- The goal is to identify sites that CEI should take a closer look at during field investigations...any info is appreciated!
- Please provide information by <u>June 1<sup>st</sup></u>, <u>2025</u>



#### **Examples of Helpful Information**


- Erosion areas
- Shoreline areas lacking vegetation...or where vegetation could be improved
- Waterfowl flocks (droppings)
- Public areas where pet waste pickup is an issue
- Areas where stormwater flows directly to waters
- Stormwater infrastructure in poor condition
- Areas with flooding concerns

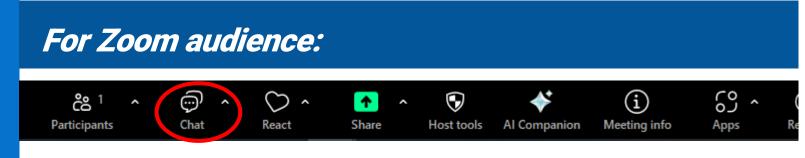


#### Examples of "Not So Helpful" Information

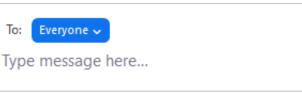
- Neighbor complaints
- Photos without location / description
- General trash/litter observations
- Areas of concern outside of the watershed
- Concerns/observations related to aquatic vegetation and algae

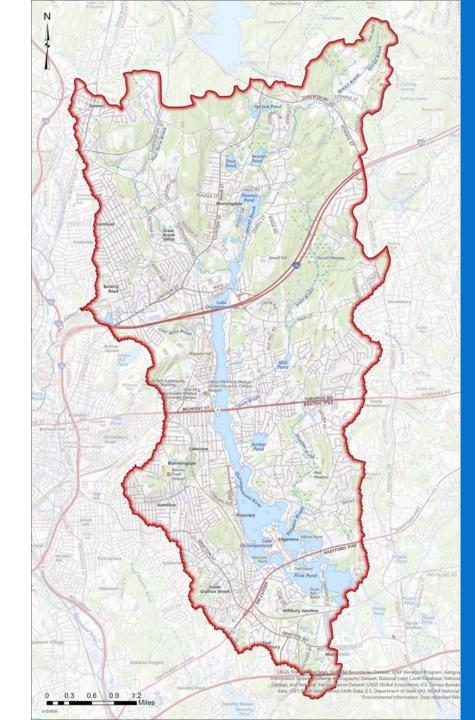
# Recap




Step 1 **Compile Data / Data Management Plan Public Workshops / Public Engagement** Step 2 ongoing Step 3 **Modeling and Analysis** ongoing **Determine Water Quality Goals** Step 4 ongoing Step 5 **Assess Watersheds Develop Action Strategy** Step 6 Step 7 **Develop Final Plan** 




# Please Volunteer for the Watershed Assessment!




- Place a dot sticker on the location(s) where you will survey
- Provide contact info on the sign-up sheet
- No need to commit right now
- Thank you!



• Type location and your contact info (name, email) in the chat box (lower right corner of screen)



