GEOTECHNCIAL REPORT

Coal Mine Brook
Observation Platforms
December 2021
0 Plantation Street Worcester, Massachusetts

Prepared for:

Beals & Thomas

Reservoir Corporate Center 144 Turnpike Road Southborough, MA 01772-1204

City of Worcester

Department of Public Works 50 Skyline Drive Worcester, MA 01605

Gill Engineering Associates, Inc. 63 Kendrick Street Needham, MA 02494

Table of Contents

1.	INT	RODUCTION	1
	1.1. 1.2.	Scope of Report	1
2.	SUB	SURFACE CONDITIONS	2
	2.1.2.2.2.3.	Local Geology Subsurface Exploration Subsurface Profile	2
	2.3.3 2.3.3 2.3.3	1. Boring B-1	2
	2.4. 2.5.	Seismic Design Category Evaluation Liquefaction Potential	4
3.	REC	COMMENDED FOUNDATION SYSTEM	4
	3.1. 3.2.	Shallow Foundation Deep Foundation	
4.	CON	NSTRUCTION CONSIDERATIONS	4
	4.1. 4.2. 4.3. 4.4.	Excavation Obstructions Protection of Adjacent Structures and Utilities Sequence of Construction Activities	5
5.	CON	NCLUSION	5

Appendix

- 6.1. Project Locus Map
- 6.2. Surficial Geologic Map
- 6.3. Boring Location Plan
- 6.4. Boring Logs
- 6.5. Preliminary Design Calculations

1. INTRODUCTION

1.1. Scope of Report

The purpose of this report is to provide recommendations for the foundations for the proposed observation platforms to be constructed along Coal Mine Brook in the City of Worcester, Massachusetts. The observation platforms are part of park improvements being done by the City's Department of Public Works. All parameters provided will be in accordance with AASHTO LRFD 9th Edition Design Specifications and the 9th Edition of the Massachusetts State Building Code. The report will also provide recommendations for the construction of the proposed foundations with guidance on minimizing potential construction issues.

1.2. Site Description

The park is located along Lake Quinsigamond in the eastern part of the City Worcester as depicted on the site location map in Appendix 6.1. The observation platforms being proposed are to be located adjacent to Coal Mine Brook and the existing East Side Trail.

As part of the park improvements, two observation platforms are being proposed to overlook Coal Mine Brook. This will require clearing and grubbing of the vegetation that currently exist in the proposed observation platform locations. The photo below shows the dense vegetation along Coal Mine Brook and the East Side Trail, as well as Lake Quinsigamond in the background.

Photo 1-Showing dense vegetation nearby the proposed observation platform locations.

There are overhead transmission lines between the east and west observation platforms. These lines are not anticipated to interfere during construction.

2. SUBSURFACE CONDITIONS

2.1. Local Geology

According to the USGS Bedrock Geologic Map of the Worcester North Quadrangle, Worcester County, Massachusetts, the site is underlain by quartz-muscovite phyllite or schist, overtop metsandstone beds as much as 5cm thick. Some plagioclase-biotite-hornblende-quartz granofels can also be found in the area. See Appendix 6.2 for the map.

According to the Soil Conservation Survey Map, the site the upper layers consist of loamy sand and fine sandy loam. See Appendix 6.2 for the map.

2.2. <u>Subsurface Exploration</u>

The subsurface exploration consisted of two (2) soil borings located within 50' of the proposed observation platforms (designated as B-1 & B-2). The borings were drilled using a 3-inch hollow stem auger casing and a 1 3/8-inch split spoon sampler on April 22, 2021 by New England Boring Contractors, Inc. of Derry, New Hampshire and observed by Gill Engineering Associates, Inc. (GEA) which included a visual and hands-on examination of the soil samples. See Appendix 6.3 for an asdrilled boring site plan and Appendix 6.4 for boring logs.

2.3. Subsurface Profile

2.3.1. Boring B-1

The existing ground grade at B-1 is at \sim 400.0'. The top 12 feet consists of loose soil comprised of medium or silty sand with some coarse gravel and cobble. The layer from 12 feet down to the end of the boring at 27 feet consists of medium dense medium sand, coarse sand, or silty sand, and gravel with trace fine cobble. Ground water depth was measured to be at \sim 25' below grade.

2.3.2. Boring B-2

The existing ground grade at B-2 is at \sim 380′. The top 12 feet consists of very loose to loose medium sand with some cobble. The layer below 12 feet to the end of the boring at 27 feet consists of coarse and medium sand with coarse gravel and trace cobble. Ground water depth was measured to be at \sim 20′ below grade.

2.3.3. Soil Parameters

See Table 1 for recommended soil parameters for design. See Appendix 6.6 for calculations.

Table 1: Recommended Soil Parameters

Layer	Unit Weight γ (lb/ft³)	Friction Angle Φ
Upper (0' to 10')	120	30
Lower (>10')	120	38
Gravel Borrow	125	37

- 1. Friction angle based upon SPT N160 Correlation and AASHTO Table 10.4.6.2.4-1
- 2. Gravel borrow per MassDOT M1.03.0

2.4. Seismic Design Category Evaluation

Seismic design parameters were determined using the 9th Edition of the Massachusetts Building Code and ASCE 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Calculations are presented in Appendix 6.6 – Preliminary Design Calculations. The following are recommended seismic parameters for design:

Site Class: D (Medium dense soil with 15<N<50 blows/ft)

Mapped Ground and Spectral Response:

- Peak Horizontal Ground Acceleration (PGA): 0.12
- Horizontal Response Spectral Acceleration, 0.2 Sec (S_S): 0.21
- Horizontal Response Spectral Acceleration, 1.0 Sec (S₁): 0.05

Site Factors:

- Zero-Period (F_{pga}): 1.6
- Short Period (F_a): 1.6
- Long Period (F_v): 2.6

<u>Design Spectral Response Parameters for Site Class D:</u>

- A_s: 0.19 G
- S_{DS}: 0.22 G
- S_{D1}: 0.05 G

Seismic Design Category B

2.5. <u>Liquefaction Potential</u>

Based on the soil conditions found at the project site, seismically induced settlement should not be significant; therefore, there is a low potential for liquefaction in the event of seismic activity. The soils present are medium dense and well-graded. Additionally, the site has a low probability of having an event that would trigger liquefaction (M<6.0).

3. RECOMMENDED FOUNDATION SYSTEM

3.1. Shallow Foundation

It is not recommended to use a shallow foundation for the support for the boardwalk structure due the loose upper soil layers.

3.2. <u>Deep Foundation</u>

A deep foundation consisting of helical piles may be a viable alternative and will provide ease of construction due to the site constraints of the timber terrain.

An analysis was performed to determine the length, size and number of helical plates for the maximum load. See summary table below and Appendix 6.6 for detailed calculations.

Table 1-Summary of Helical Pile Analysis

Boring		Plate D	iameter	Min.	Max.	Allow.	
#	Pile Size	1	2	3	Embedment	Unsupported L	Pile Load
1 & 2	2.875 in	12.00 in	10.00 in	8.00 in	10 ft	6 ft	18.2 kips

4. CONSTRUCTION CONSIDERATIONS

4.1. Excavation

As required by OSHA regulations, lateral support is required for any excavation depth greater than four feet and where 1.5:1 slope cannot be maintained. Items for temporary earth support should be included in the contract documents. The design of any temporary support earth (SOE) is the responsibility of the Contractor and should be designed in accordance with Massachusetts Building Code requirements.

4.2. Obstructions

The proposed observation platforms will be located over area currently occupied with heavy vegetation including trees. Foundation placement should consider obstruction from tree roots that would remain in place after site preparations and the presence of cobbles. The presence of obstructions may require relocating helical piles in order to meet the minimum embedment length.

4.3. Protection of Adjacent Structures and Utilities

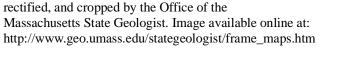
There are overhead transmission lines between the east and west observation platforms. These lines are not anticipated to interfere during construction, assuming there is a 20' clearance for construction equipment.

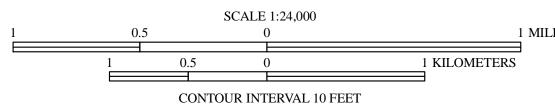
4.4. Sequence of Construction Activities

No special sequencing of construction will be anticipated to accommodate pedestrians within the park or adjacent traffic.

5. CONCLUSION

It is recommended to use helical piles to support the observation platform structures. It is recommended that the contractor evaluate soil conditions prior to ordering helical piles due to the presence of obstructions.


6.1. <u>Project Locus Map</u>


Coal Mine Brook Observation Platforms

Lake Quinsigamond **Project Location** WIGWAM HILL MassMapper. 1:9,028

Property Tax Parcels

6.2. <u>Surficial Geologic Map</u>

Compiled by Byron D. Stone, Janet R. Stone, and Mary L. DiGiacomo-Cohen 2008

6.3. Boring Location Plan

LOCUS NOT TO SCALE

NOTES:

- 1. LOCATION OF DRIVE SAMPLE BORINGS ARE SHOWN THUS: lacktriangle
- BORING DEPTHS SHALL BE APPROXIMATELY 25 FEET.
- 3. BORING LOGS SHALL BE PREPARED AND SUBMITTED TO GILL ENGINEERING ASSOCIATES.
- 4. BORING LOCATIONS MAY BE ADJUSTED TO AVOID CONFLICTS WITH EXISTING UTILITIES.
- 5. SOIL SAMPLES SHALL BE PROVIDED TO THE ENGINEER ON-SITE FOR STORAGE AT GILL ENGINEERING.

BORING PLAN

NOT TO SCALE

BORING PLAN CITY OF WORCESTER

BORING PLAN FOR COAL MINE BROOK PLATFORMS

PLAN VIEW 4/28/2021

SHEET

6.4. Boring Logs

GIL	L		Gill	Engineering As 63 Kendrick		Inc.		Boring No.	B-1
ENGII	NEERING			Needham, MA				2	
City/Tow	n: Worceste	er, MA	Bridge Numb	•	Project File Number: N/A Contract Number:			per:	
		Brook – West Pla				ne Started: 4/22/2	021 at 10:55	ll	Total Hours:
Groundy	vater Depth	(Feet): ~25'	Date & Time	: 4/22/2021		ne Completed: 4/2			1
	•	7'27" W: 71°45'				mpany & Name:			
	Elevation (F					sentative: Nikki N			
Depth	Sample	Depth Range	Blow Cou	nts per 6 Inches	Recovery			tion	Strata
(Feet)	Number	(Feet)	•	s Minutes per Foot	(inches)	ľ	Field Descrip	ouon	Changes
- - -	S-1	0' – 2'	1 –	2-3-2	7"	Dry, very loose coarse gravel, t		DIUM SAND and le	
- 5	S-2	5' – 7'	4 –	-2-2-2	6"	Moist, very loos SAND, some co			5'
- - - 10 - -	S-3	10' – 12'	3 -	2-4-3	15"	Moist, loose, lig	ht brown, MI	EDIUM SAND	
- 15	S-4	15' – 17'	16 – 2	22 – 16 – 18	9"	Moist, medium SAND, trace of		n/grey, MEDIUM gravel	17'
- - - 20 - -	S-5	20' – 22'	26 – 27 – 26 - 28		23"	Dry, medium de SAND and grav			
- 25	S-6	25' – 27'	23 –	18 – 15 – 13	13"	Moist, medium some coarse gr		n, SILTY SAND, f cobble	27'
- - - 30 - - - - 35						End of Explorat	ion		
Remarks:						rd: x	Well Depth Stick Up P	ipe: x Scre	d Pipe: x en Pipe: x
Penetration Resistance (N) Guide Cohesionless Soils (Sands, Gravels) Cohesive						Clava		ill Rig: Mobile Co	
Relative Density Penetration Resistance Consistency			Soils (Silts, Penetrati	on Resistance		be: Hollow Stem ner Weight: 300lb	Size: 3" os		
Very Loose 0 – 4 Very Soft			0 – 2	Fall: 3	0"				
Loose 4 – 10 Soft Medium Pense 10, 30 Medium Stiff			2 – 4	Depth:		Ci=0: 4 0/0'			
Medium Dense 10 – 30 Medium Stiff Dense 30 – 50 Stiff		Medium Stiff Stiff		4 – 8 8 – 15	Sampler Ty Autom	ype: S/S natic Hammer We	Size: 1-3/8' eight: x		
	Dense	Over		Very Stiff Hard	15 – 30 Safety Hammer Weight: x			t: x	
		N = Sum o	of Second and			Over 30 Donut Hammer Weight: 140 lbs Fall: 30"			. 1 10 100
Terms l	N = Sum of Second and Third 6" Blow counts Fall: 30" Terms Used for Second Entry of Descriptions: and = 40-50%, some = 10-40%, trace = 10% or less Core Barrel Type: x Size: x								

			Cill	Fraincering Ac		ln a		<u> </u>	
GII	L		GIII	Engineering As 63 Kendrick	Street	inc.		Boring No. E	
ENGI	NEERING			Needham, MA					
City/Tov	vn: Worceste	er, MA	Bridge Numb	oer: N/A	Project File	Number: N/A		Contract Number	
Location	n: Coal Mine	Brook - East Pla	tform		Date & Tim	ne Started: 4/22/2	021 at 8:46 A	MA	Total Hours:
Ground	water Depth	(Feet): ~20'	Date & Time	: 4/22/2021	Date & Tim	ne Completed: 4/2	22/2021 at 10):30 AM	1.75
Coordin	ates: N: 42°1	7'27" W: 71°45'	33"		Driller's Co	mpany & Name:	NEBC – Anth	nony	
Ground	Elevation (F	eet): ~380'			Gill Repres	entative: Nikki Ne	elson		
Depth (Feet)	Sample Number	Depth Range (Feet)		nts per 6 Inches s Minutes per Foot	Recovery (inches)	F	Field Descrip	tion	Strata Changes
-	S-1	0' - 2'	2 -	3-4-4	7"	Dry, very loose, of cobble	, brown, MED	DIUM SAND, trace	,
- - 5	S-2	5' – 7'	4 –	5-7-6	4"	Dry, very loose, some cobble	, brown, MEC	DIUM SAND, with	5'
- - - - 10 - -	S-3	10' – 12'	9 –	7-6-6	11"	Dry, loose, light coarse gravel, s		DIUM SAND, and	
- 15	S-4	15' – 17'	21 –	19 – 18 - 21	9"	Dry, medium de SAND and grav			17'
- - - 20 - -	S-5	20' – 22'	11 –	13 – 12 – 10	13"	Wet, medium dand coarse grav		MEDIUM SAND cobble	
- 25	S-6	25' – 27'	12 –	15 – 18 – 21	11"	and coarse grav	vel, trace of c	MEDIUM SAND	27'
- - 30 - - - - 35						End of Explorat	ion		
Remarks:						rd: x	Well Depth Stick Up Pi	pe: x Scree	Pipe: x n Pipe: x
	ohosian!			ance (N) Guide	Coile (Cite	Clava		III Rig: Mobile Con	
Cohesionless Soils (Sands, Gravels) Cohesive Selative Density Penetration Resistance Consistency				Soils (Silts,	Clays) on Resistance	~	be: Hollow Stem er Weight: 300lbs	Size: 3	
Very Loose 0 – 4 Very Soft			0 – 2	Fall: 30					
Loose 4 – 10 Soft			2 – 4	Depth:	X				
Medium Dense 10 – 30 Medium Stiff			4 – 8	Sampler Ty		Size: 1-3/8			
	ense Dense	30 – 9 Over		Stiff Very Stiff	1	3 – 15 5 – 30	Safety	atic Hammer Weight:	X
				Hard Third 6" Blow count	S	over 30	Fall: 30		140 lbs
Terms	Used for Sec	cond Entry of Des	criptions: and	= 40-50%, some = 1	0-40%, trace	e = 10% or less	Core Barre	l Type: x	Size: x

6.5. Preliminary Design Calculations

CLIENT BEALS & THOMAS				
PROJECT_COAL MINE BROOK				
BRIDGE NO. N/A				
SUBJECT GEOTECHNICAL CALCS				

pageof5		
CALC BY LCS		
CHECK BY JAV		
DATE DEC. 2021		

FXISTING	SOII	CONDITION	5

CLIENT BEALS & THOMAS

PROJECT COAL MINE BROOK

BRIDGE NO. N/A

SUBJECT GEOTECHINCAL CALCS

PAGE 2 OF 5

CALC BY LCS

CHECK BY JAV

DATE DEC. 2021

Soil Strength Worcester, MA

References:

(1) AASHTO LRFD Bridge Design, 9th Edition, 2020

(2) 04/22/2021 Geologic Earth Exploration - Subsurface Investigation

Soil Strength (10.4.6.2.4)

 $\gamma_w = 0.062$ kcf $\gamma_{sat} = 0.120$ kcf

Water Table B-1 = 25.00 ft 10 year flood Water Table B-2 = 20.00 ft 10 year flood

Boring B-I Blow Count Correction for Overburden Pressure - West Platform

To Depth (ft)	h _i (ft)	h ₂ (ft)	σ' _v (ksf)	C_{N}	N blows/ft	$NI = C_N N$ blows/ft	N ₆₀ = (ER/GO%)N blows/ft	$NI_{60} = C_NN_{60}$ blows/ft
	1	0	0.120	1.94	5	9.7	6.67	12.95
5	5	0	0.600	1.40	4	5.6	5 <i>.</i> 33	7.49
10	10	0	1.200	1.17	6	7.0	8.00	9.38
15	15	0	1.800	1.04	38	39.4	50.67	52.54

Boring B-2 Blow Count Correction for Overburden Pressure - East Platform

To Depth (ft)	h _i (ft)	h ₂ (ft)	σ' _v (ksf)	C_{N}	N blows/ft	$NI = C_N N$ blows/ft	N ₆₀ = (ER/GO%)N blows/ft	$NI_{60} = C_NN_{60}$ blows/ft
1	I	0	0.120	1.94	7	13.6	9.33	18.13
5	5	0	0.600	1.40	12	16.9	16.00	22.47
10	10	0	1.200	1.17	13	15.2	17.33	20.33
15	15	0	1.800	1.04	37	38.4	49.33	51.16

 $h_1 = depth above water table$

 $h_2 = depth below water table$

 $\sigma'_{\,\scriptscriptstyle V} = \, \gamma h_{\,\scriptscriptstyle \parallel} \, + \, \gamma' \, h_2$

 $\gamma^{\text{\tiny I}} = \gamma_{\text{\tiny Sat}} - \gamma_{\text{\tiny W}}$

 $C_{N}=~0.77~log_{10}~(40~/\sigma_{_{V}}^{\scriptscriptstyle I})<2$

(1) 10.4.6.2.4.-1

CLIENT BEALS \$ THOMAS

PROJECT COAL MINE BROOK

BRIDGE NO. N/A

SUBJECT GEOTECHINCAL CALCS

page 3 of 5
calc by LCS
check by JAV
date DEC. 2021

Hammer Efficiency Correction

 $N_{60} = (ER/60\%)N$

ER = 80%

 $N_{60} = 1.333 \text{ N}$

 $NI_{60} = C_N N_{60}$

(1) 10.4.6.2.4-2

Automatic Trip Hammer used

(1) 10.4.6.2.4-3

Drained Friction Angle

Table 10.4.6.2.4-1—Correlation of SPT $N1_{60}$ Values to Drained Friction Angle of Granular Soils (modified after Bowles, 1977)

N1 ₆₀	φς
<4	25–30
4	27–32
10	30–35
30	35–40
50	38–43

Conservatively use lower values of range:

N160	ф
<4	25
4	27
10	30
30	35
50	38
'	•

Depth (ft)	N I 60	NI _{60 low}	NI 60 high	$\phi_{\text{f low}}$	ф _{f high}	ф
1	13	10	30	30	35	30
5	16	10	30	30	35	31
10	52	50	50	38	38	38
15	53	50	50	38	38	38

Recommended Friction Angles:

$$\phi_f = 30$$

$$\Phi_f = 38$$

CLIENT BEALS & THOMAS

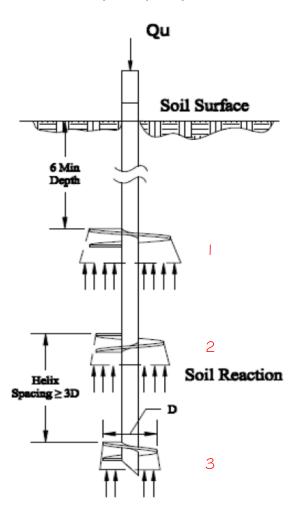
PROJECT COAL MINE BROOK

BRIDGE NO. N/A

SUBJECT GEOTECHINCAL CALCS

PAGE 4 OF 5

CALC BY LCS


CHECK BY JAV

DATE DEC. 2021

HELICAL PILE DESIGN Worcester, MA

References:

- (1) AASHTO LRFD Bridge Design, 9th Edition, 2020
- (2) Helical Anchors, Inc. Engineering Design Manual, 2014

CLIENT BEALS & THOMAS PROJECT COAL MINE BROOK BRIDGE NO. N/A SUBJECT GEOTECHINCAL CALCS page 5 of 5 CALC BY LCS CHECK BY JAV DATE DEC. 2021

REF-2

General Equation for computing bearing capacity per Helix Plate:

 $Q_u = A_h(\text{cNc} + \text{q'Nq} + 0.5\gamma'BN\gamma)$

Where: Qu = Ultimate Capacity (lbs)

Ah = Projected Helical Plate Area (ft2)

 $c = Soil Cohesion (lb/ft^2)$

 N_c = Bearing capacity factor for cohesion (dimensionless)

q' = Effective Overburden Pressure (1b/ft²)

Nq =Bearing capacity factor for overburden (dimensionless)

 γ ' = Effective unit weight of the soil (lb/ft³)

B = Footing width (ft)

N_γ = Bearing Capacity factor (dimensionless)

The base width B term can be neglecte which reduces the equation to:

Equation 2

$$Q_u = A_H(cN_c + q'N_q)$$

RFF-2

Helical Pile Input:

Shaft Square or Round? Round

Width or Diameter? 2.88 in

Shaft Area=

6.49 m^2

Plate #	Dıa	$A_h (in^2)$		
	12.00 ın	106.61		
2	10.00 ın	72.048		
3	8.00 ın	43.774		

Soil Properties:

$$\gamma_{\rm w} = 0.062$$
 kcf

$$\gamma_{\text{sat}} = 0.120 \text{ kcf}$$

Water Table Depth = 20.00 ft

Plate #	Depth	h _i (ft)	h ₂ (ft)	q' (ksf)	c (ksf)	N_c	Фf	N _q	Q _u (Kıps)
1	6	6	0	0.720	0	0	34	29.4	15.67
2	8	8	0	0.960	0	0	34	29.4	14.12
3	10	10	0	1.200	0	0	34	29.4	10.72

40.52 Total=

$$Q_{all} = Q_{l}/FS$$
 Where $FS = 2$ $Q_{all} = 20.3 \text{ Kips}$

Factored Nominal Bearing Resistance of piles,
$$R_R = \phi R_n$$
 where $Q_u = R_n$ REF 1-10.7.3.8.6a-1 Where $\phi = \frac{0.45}{1.000}$ Ref 1-10.7.3.8.6a-1

# C	
ı	
ı	
1	

	Pile Diameter x Thickness (in) x (in)	Max Torque (Tube Connection Failure Point) (lb-ft)	Allowable Compression Capacity (SF of 2 applied) (lb)	Allowable Tension Capacity depth ≤ 14ft (SF of 2 applied) (lb)	Allowable Tension Capacity depth >14ft (SF of 2 applied) (lb)	Torque Correlation Factor Kt (ft-1)	
1 7/8"	1.875"x 0.154"	1975	9875	4938	6913	10	
2 3/8"	2.375"x 0.154"	3150	15750	7875	11025	10	
2 7/8"	2 875"x 0.250"	7020	31590	15795	22113	9	CWB
3 ½"	3.500"x 0.250"	11500	40250	20125	28175	7	CERTIFIED
4 1/2"	4.500"x 0.250"	18495	51786	25893	36250	5.6	
5 9/16"	5.5625"x 0.250"	29120	65520	32760	45864	4.5	ISO 9001 2015
5 9/16"	5.5625"x 0.375"	40988	92223	46112	64556	4.5	,
6 5/8"	6.625"x 0.250"	42155	84310	42155	59017	4	ISO 14001 2015
6 5/8"	6.625"x 0.375"	59951	119902	59951	83931	4	ICC
8 5/8"	8.625"x 0.250"	73231	109847	54923	76893	3	(ES)
8 5/8"	8. 625"x 0.375"	105451	158177	79088	110724	3	
10 ¾"	10.75"x 0.250"	115832	144510	72225	101157	2.5	NRC-CNRC
10 ¾"	10.75"x 0.375"	167832	209790	104895	146853	2.5	
12 ¾"	12.75"x 0.375"	239756	239756	119878	167829	2	

GoliathTech Inc. products are certified and approved by ICC-ES ESR-3726 and the Canadian Construction Materials Centre (CCMC 13675-R.) Their performance is equivalent or superior to prescribed NBC2015 standards. GoliathTech manufacturing facility is certified to the quality standard ISO 9001:2015 (Certificate number Q101242) as well as the environmental standard ISO 14001:2015. Its manufacturing welding facility is certified to CSA W47.1

NOTES

Helical piles shall be installed to appropriate depth in suitable bearing stratum as determined by the geotechnical engineer or local jurisdictional authority. Torque correlated capacities are based on installing the pile to its torque rating, using consistent rate of advance and RPM. A minimum factor of safety of 2 has already been applied to the above numbers. To calculate ultimate compression or tension multiply above allowable numbers by 2. Deflections of 0.25 to 0.50 inches are typical at allowable capacity.

- $1. The \ distance \ between \ the \ piles \ has \ to \ be \ a \ minimum \ of \ 3x \ the \ helix \ size \ (although \ we \ suggest \ 5x) \ from \ the \ center \ of \ the \ pile \ but \ no \ less \ than \ 3'.$
- 2. Compression values are based on fully laterally supported piles (pile fully embedded in soil), if not, contact engineering department for calculations.
- 3. The compression and tension values take into account the steel corrosion for 50 years.
- 4. Steel shaft conform to CAN/CSA G40.21 and ASTM-A500 class C , hot dip galvanized conform to ASTM A123.
- 5. Steel yield strength for $3 \frac{1}{2}$ " piles and less Fy = 60 ksi, Tensile strength Fu = 70 ksi
- 6. Steel yield strength for 4.1/2" piles and more Fy = 55 ksi, Tensile strength Fu = 65 ksi (other strengths can be obtained for special orders, contact customer service.)
- 7. Different helix configurations and pile heads are available.
- 8. For custom heads or steel assembly (including mechanical design and shop drawing) contact customer service.

GoliathTech Inc 175B rue Péladeau, Magog, QC, Canada, J1X 5G9	Date August 1st 2019	Revised and Approved by Hussien Abd El Baky	
TECHNICAL DATA SHEET	Doc Number GTSPEC001	Massachusetts license number 55074	

GOLIATHTECH Inc.
Telephone: 1-855-743-4777 / 1-819-843-4777
Email: Info@goliathtechpiles.com

Revision number : 3 Date : Aug 1st 2019 www.goliathtechpiles.com